地球温暖化と天候パターンの変化でここ数年の米国は壊滅的な山火事に苦しめられた。そしてこの、本来なら普通の自然現象は、きわめて予測不可能で深刻な災害になった。そこでスタンフォード大学の研究者たちは、機械学習と衛星画像を利用して危険な乾燥地域を調べ予報する方法を見つけた。
これまでの、山火事になりやすい森林や低木地帯の検査方法は、手作業で枝や葉を集め、その水分を調べた。それは正確で信頼できる方法だが、きわめて労働集約的で大規模な調査は難しい。
しかし幸いにも最近は、その他のデータソースを利用できる。欧州宇宙機関(European Space Agency)の人工衛星センティネルとランドサットは、地表の画像を大量に集めており、それらを詳しく分析すれば山火事のリスクを評価するための二次的なデータソースが得られる。しかもこの方法なら、木の枝の棘に刺される心配もない。
衛星画像を利用する観測方法は以前から存在するが、人間の目で判断するため極端にサイト固有の結果になりがちだ。つまり、場所によって分析方法が相当異なっている。棘の心配はないが、広い面積の調査は難しい。スタンフォードのチームが利用した新しい方法では、センティネル衛星の「合成開口レーダー」を利用して森林の林冠を貫き、その下の地表の画像を見る。
スタンフォードの生態水文学者Alexandra Konings(アレクサンドラ・コーニングス)
コメント