ブログで100万の秘訣ってなに?
詳しくはコチラ

大阪大学、薬剤耐性菌・非耐性菌を電子顕微鏡画像と深層学習により形で判別することに成功

薬剤耐性菌(左)と非耐性菌(右)の電子顕微鏡画像。耐性菌は外膜の形状が変化し、一部ブレブ構造(矢頭)も認められる。白矢印は異染顆粒
大阪大学は3月16日、薬が効かない薬剤耐性菌を画像で判別できることを明らかにした。顕微鏡画像と深層学習により、耐性の獲得による形態の変化を検知し、さらにその特徴に寄与する遺伝子の紐付けにも成功した。薬剤耐性化の過程での細菌の形態変化、遺伝子や耐性化因子の変化が、機械学習によって複合的に理解できるようになるという。
抗菌薬に長い間さらされることで耐性を獲得した薬剤耐性菌による感染症が問題になっている。薬剤耐性菌が出現するメカニズムについては盛んに研究されているものの、耐性化の抑制に欠かせない総合的な理解は進んでいない。大阪大学産業科学研究所の西野美都子准教授、青木工太特任准教授、西野邦彦教授らによる研究グループは、複数の薬が効かなくなる多剤耐性に関する研究を行っており、その過程で、耐性を獲得した細胞は遺伝子だけでなく形も変化させていることを発見した。そこで細菌の顕微鏡画像と深層学習を用いて形態からの薬剤耐性菌・非耐性菌の判別を試みた。
電子顕微鏡解析の流れ
研究グループは、薬剤耐性菌であるエノキサシンを用いて、急速冷凍固定法で凍結して電子顕微鏡用のサンプルを作り、細菌の細胞内部構造が観察できるようにした。これを1万枚以上撮影し、深層学習で判別したところ、

リンク元

コメント

タイトルとURLをコピーしました