ブログで100万の秘訣ってなに?
詳しくはコチラ

海洋研究開発機構と鹿児島大、デジカメ撮影による海岸の写真からAIで漂着ごみの被覆面積を高精度に推定する新手法を開発

セマンティック・セグメンテーションを用いた、海岸の写真からの海ごみ検出のイメージ図。写真に対して、ピクセル単位でのクラス分類が行われる。訓練用に2800枚、評価用に700枚の画像データを用いた(写真は山形県提供)
海洋研究開発機構と鹿児島大学は2月4日、ディープラーニングを用いた画像解析で、デジカメなどで普通に撮影された海岸の写真から、海岸の漂着ゴミを検出する手法を開発したと発表した。
海岸漂着ゴミの実態調査は世界中で行われているが、ゴミの現存量の定量化が行える、汎用性と実用性の面で優れた技術がなかった。人による調査では、経済的負担、時間的制約、さらに範囲も限定されてしまい、精度にも課題があった。ドローンや人工衛星を使う技術も開発されているが、それではコストがかかりすぎる。そこで、海洋研究開発機構の日高弥子臨時研究補助員、松岡大祐副主任研究員と、鹿児島大学の加古真一郎准教授からなる研究グループは、地上においてデジカメなどで簡易的に撮影された画像から、高精度で海洋漂着ゴミの定量化ができる技術の研究に着手した。
ここで採用されたAI技術は、セマンティック・セグメンテーションと呼ばれるもの。ディープラーニングを用いた画像解析技術で、画像内のすべてのピクセルにラベル付けを行い、ピクセルごとに、人工ゴミ、自然ゴミ、砂浜、海、空といったクラスを出力する。そのクラス特有のパターンの学習には、山形

リンク元

コメント

タイトルとURLをコピーしました