ブログで100万の秘訣ってなに?
詳しくはコチラ

Metaの研究者が画像・音声・文字を同じように学習するAIを開発

AIの領域には常に進歩が見られるが、それは1つの分野に限定される傾向がある。例えば、合成音声を生成するためのクールな新方法は、人間の顔の表情を認識するための方法とはまた別の分野だ。
かつてのFacebook(フェイスブック)から社名が変わったMeta(メタ)の研究者たちは、もう少し汎用性のあるもの、つまり話し言葉、書かれた文字、視覚的な認識を問わず、自分でうまく学習することができるAIの開発に取り組んでいる。
AIモデルに何かを正しく解釈させるための伝統的な訓練方法では、ラベル付けした例を大量(数百万単位)に与えて学習させる方法が採られてきた。猫の写真に猫とラベル付けしたものや、話し手と言葉を書き起こした会話などだ。しかし、次世代AIの学習に必要な規模のデータベースを手作業で作成することは、もはや不可能であることが研究者たちによって明らかにされたため、このアプローチはもはや流行遅れとなった。誰が5000万枚の猫の写真にラベルを付けたいと思うだろうか?まあ、中にはそんな人もいるかもしれないが、しかし、一般的な果物や野菜の写真を5000万枚もラベル付けしたい人はいるだろうか?
現在、最も有望視されているAIシステムの中に「自己教師型」と呼ばれるものがある。これは、書籍や人々が交流している様子を撮影したビデオなど、ラベルのない大量のデータを処理し、システムのルールを構造的に理解するモデル

リンク元

コメント

タイトルとURLをコピーしました