ブログで100万の秘訣ってなに?
詳しくはコチラ

【コラム】AIのトレードオフ:強力なパワーと危険な潜在的バイアスのバランス

新たなAIツールのリリースが続く現在、有害なバイアスが存続するリスクがますます高まっている。特に、今までAIアルゴリズムのトレーニングに使用されてきた社会的・文化的規範の多くが改めて認識された2020年以降、このリスクは増大し続けると考えられる。
膨大な量のトレーニングデータを元に本質的に強力な基本モデルがいくつか開発されているが、有害なバイアスのリスクは残存している。私たちはこの事実を認識する必要がある。
認識すること自体は簡単だろう。理解すること、そして将来のリスクを軽減することははるかに困難だ。AIモデルの開発にともなうリスクをより正しく理解するためには、まずバイアスの根源を確実に知る必要がある。
バイアスの隠された原因
現在のAIモデルは、事前に学習されたオープンソースであることが多く、研究者や企業はAIをすばやく導入し、個々のニーズに合わせて調整することができる。
このアプローチではAIを商業的に利用しやすくなるが、真の弱点もここにある。つまり、業界や地域を問わず、AIアプリケーションの大半が一握りのモデルに支えられているのだ。これらのAIモデルは、検出されていないバイアス、あるいは未知のバイアスから逃れられず、これらのモデルを自分のアプリケーションに適応させることは、脆弱な基盤の上で作業することを意味する。
スタンフォード大学のCenter for Research o

リンク元

コメント

タイトルとURLをコピーしました