カメラの映像鮮明化が期待できる、ディープニューラルネットワークが開発されました。
自動車の自動運転機能はこのネットワークを使用して、より正しい判断を下すことが可能になります。
現在たくさんの会社が自動車の自動運転技術に取り組んでいます。また、どの社も様々な方法で工学的挑戦に取り組んでいます。
特に人間の見る能力の主たる3つの要素:レーダー(電波探知測距)、カメラ機能、そしてライダー(光を使った物体検知と測距)を模倣するテクノロジー向上への取り組みが活発です。
雨・雪・その他の種類の妨害物など、いくつかの要因によってカメラの視界が低下することがあります。 周囲を感知する機能が誤作動し、センサーから入ってくるデータを検証するシステムの能力を妨げるためです。
センサーの誤作動で感知した無効なデータを、できる限り迅速にかつ効果的に、下流のモジュールに到達する前に検出するために、NVIDIA社の研究者はカメラの映像鮮明化が期待できるAIモデルを開発しました。
ClearSightNetと命名されたディープニューラルネットワークを使用して、妨害物・遮蔽物・および視認性の低下につながる根本的な原因を発見します。
これにより以下のことが可能になります。一つはカメラの視認性が低下しうる原因が多岐に渡って
コメント