ブログで100万の秘訣ってなに?
詳しくはコチラ

ニューラルネットワークを使って、ゲームのアニメーションのぎこちなさを減らす

最近の投稿
最近のゲームのグラフィックス精度には目を見張るが、クリエーターが表現に苦労することの一つが人間の滑らかな動きだ。本物のモーションキャプチャーデータを利用したニューラルネットワークに基づくアニメーションシステムを使えば、アバターの歩いたり走ったりジャンプする動きをもっと自然にできるかもしれない。
関連記事
PixarがKhan Academyと共同で無料の「ストーリーテリング講座」を開講
日本発のPaintsChainerはAIで線画を自動着色―ニューラルネットワークが驚異の能力

もちろん最近のゲームをプレイしたことのある人なら、すでに多くのゲームでスムーズな動きが実現しているのをご存知だろう ―― しかしそのためには、アニメーターたちがさまざまな動きをライブラリーから選びあらゆる場面にリンクさせる忍耐強い作業が必要だ。女性キャラクターが2階に登りながら弓を引き、さらにかがみこんだらどうなるのか?彼女が細い棒の上でバランスを取っている間に撃たれたらどうなるのか?可能性は無限にある。
エジンバラ大学とMethod Studiosの研究者が、さまざまな動きのモーションキャプチャーの部品を組み合わせる機械学習システムを作った。例えば「この方向へ行く」と入力すれば、地形を考慮して、例えば駆け足から小さな障害物を飛び越える場面にもっとも適したアニメーションを出力する。

リンク元

コメント

タイトルとURLをコピーしました